
gps2space

Mar 20, 2022

Getting Started

1 Description 3
1.1 Installation . 3
1.2 Overview . 3
1.3 Building Spatial Data . 4
1.4 Activity Space . 6
1.5 Shared space . 12
1.6 Measuring Distance . 14
1.7 Tips . 19
1.8 Useful Links . 19
1.9 Contributing . 20
1.10 Authors . 20

2 Indices and tables 21

i

ii

gps2space

Many data are not readily in spatial format. For example, data from wearable devices, surveys, and social media
platforms such as Facebook and Twitter have GPS location information, but usually in raw Lat/Long format. For social
scientists who do not have strong background in Geographic Information System (GIS), compiling and analyzing
spatial data from the aforementioned sources can be tedious and error-prone. GPS2space is an open source solution
to this issue and can ease the processes of compiling and calculating activity spaces based on raw Lat/Long coordinate
pairs.

Getting Started 1

gps2space

2 Getting Started

CHAPTER 1

Description

The primary goals of GPS2space are: 1) to build spatial data from raw Lat/Long coordinate pairs and make the
process less painful for social scientists with little GIS background; 2) to build minimum bounding geometry from
Points using buffer, convex hull methods, and use activity space as building box to calculate shared space at different
scales; 3) to calculate the nearest distance from user-defined landmarks.

1.1 Installation

1.1.1 Installing with pip

GPS2space can be installed from PyPI using pip install:

pip install gps2space

1.1.2 Installing from source

You can install by cloning the GitHub repository, then use pip to install from where you store the cloned files:

git clone https://github.com/shuai-zhou/gps2space.git
cd gps2space
pip install .

You can also install directly from the GitHub repository:

pip install git+git://github.com/shuai-zhou/gps2space.git

1.2 Overview

3

gps2space

Note: An accurate and appropriate GIS database depends on the geographic coordinate system (sometimes is used
interchangeably with datum) your are using. For example, in the North America, commonly used datums are NAD37,
NAD83, and WGS84. Throughout our package, we are using WGS84 datum because WGS84 is commonly used all
over the world and it is the default geographic coordinate system for the Global Positioning System (GPS).

Although the differences between those datums are usually not discernible, we recommend you to check what datum
you are using with your data vendor for accurate spatial measures. If your datum is not WGS84, please transform it to
WGS84 datum before you using this package.

This package is released under the MIT License, which exempts the authors and copyright holders from any claim,
damages or other liability. We will do our best to guarantee the reliability and validity of our package, but users are
responsible for their own work. See Tips for some of our suggestions in using this package to conduct reliable and
replicable research.

The following shows the available functions of the package:

• geodf.df_to_gdf: This function builds unprojected GeoDataFrame from DataFrame with Lat/Long coor-
dinate pairs

• space.buffer_space: This function calculates buffer-based activity space with user-defined level of ag-
gregation, buffer distance, and projection

• space.convex_space: This function calculates convex hull-based activity space with user-defined level of
aggregation and projection

• dist.dist_to_point: This function calculates nearest Point-Point distance with user-defined projection

• dist.dist_to_poly: This function calculates nearest Point-Polygon distance with user-defined projection
and search radius

1.3 Building Spatial Data

Compiling spatial data from raw Latitude/Longitude coordinate pairs sometimes is tedious and error-prone, espe-
cially for social scientists without much background in GIS. This example will guide you on how to convert raw
Latitude/Longitude coordinate pairs data to spatial data using our function df_to_gdf.

The data we are using is making-up Latitude/Longitude coordinate pairs of Person 1 (P1) and Person 2 (P2) in Penn-
sylvania, USA from 2020-01-01 to 2020-08-01. See here for information about how we compile the data. You can
download all the data we will be using from this GitHub Repository. Make sure the directory is your own working
directory when implementing the following steps.

To begin with, we need to import libraries we will be using to read and manipulate data.

[1]: %matplotlib inline

import pandas as pd
import geopandas as gpd
import matplotlib.pyplot as plt

Now, we load our data example.

[2]: df = pd.read_csv('../data/example.csv')
df.head()

[2]: pid timestamp latitude longitude
0 P2 2020-04-27 10:42:22.162176000 40.993799 -76.669419

(continues on next page)

4 Chapter 1. Description

https://github.com/shuai-zhou/gps2space/blob/master/notebooks/createdata.ipynb
https://github.com/shuai-zhou/gps2space/tree/master/data

gps2space

(continued from previous page)

1 P2 2020-06-02 01:12:45.308505600 39.946904 -78.926234
2 P2 2020-05-08 23:47:33.718185600 41.237403 -79.252317
3 P2 2020-04-26 14:31:12.100310400 41.991390 -77.467769
4 P2 2020-03-31 15:53:27.777897600 41.492674 -76.542921

We import our geodf module. The geodf module has a function df_to_gdf which takes three parameters:

• df: This is the name of your DataFrame

• x: This is the column name of your Longitude

• y: This is the column name of your Latitude

Make sure that you pass your Longitude and Latitude columns to x and y, respectively.

[3]: from gps2space import geodf

[4]: gdf = geodf.df_to_gdf(df, x='longitude', y='latitude')
gdf.head()

[4]: pid timestamp latitude longitude \
0 P2 2020-04-27 10:42:22.162176000 40.993799 -76.669419
1 P2 2020-06-02 01:12:45.308505600 39.946904 -78.926234
2 P2 2020-05-08 23:47:33.718185600 41.237403 -79.252317
3 P2 2020-04-26 14:31:12.100310400 41.991390 -77.467769
4 P2 2020-03-31 15:53:27.777897600 41.492674 -76.542921

geometry
0 POINT (-76.66942 40.99380)
1 POINT (-78.92623 39.94690)
2 POINT (-79.25232 41.23740)
3 POINT (-77.46777 41.99139)
4 POINT (-76.54292 41.49267)

Now the data are in spatial format with a geometry column that stores the geographical location information, we can
plot the Point GeoDataFrame on the map of Pennsylvania, USA. Please note the spatial data is in WGS84 datum and
is not projected.

[5]: pa = gpd.read_file('../data/pacounty.shp')

[6]: ax = pa.boundary.plot(figsize=(12, 12), edgecolor='black', linewidth=0.6)
gdf.plot(ax=ax, color='r')

plt.show();

1.3. Building Spatial Data 5

gps2space

We can then save the spatial data to shp file.

[7]: gdf.to_file('../data/example.shp')

1.4 Activity Space

With the Point GeoDataFrame, we can measure activity space by building geometric shapes using minimum bounding
box methods. There are several ways to build minimum bounding box, including buffer, convex hull, circle, envelope,
etc., each with pros and cons depending on the geographic distribution of the Point GeoDataFrame. Currently, we
support buffer and convex hull methods in building minimum bounding box and calculating corresponding activity
space. The following examples demonstrate how to implement buffer- and convex hull-based activity space. We
will use the example data we used in the last section as an example to illustrate how to calculate buffer- and convex
hull-based activity space. You can refer to here for how we compile the data.

We first need to import libraries we will be using for the examples.

[1]: %matplotlib inline

import pandas as pd
import geopandas as gpd
import matplotlib.pyplot as plt

We then load the data and create spatial data using the df_to_gdf method as we did in the last section.

[2]: df = pd.read_csv('../data/example.csv')
df.head()

[2]: pid timestamp latitude longitude
0 P2 2020-04-27 10:42:22.162176000 40.993799 -76.669419

(continues on next page)

6 Chapter 1. Description

https://github.com/shuai-zhou/gps2space/blob/master/notebooks/createdata.ipynb

gps2space

(continued from previous page)

1 P2 2020-06-02 01:12:45.308505600 39.946904 -78.926234
2 P2 2020-05-08 23:47:33.718185600 41.237403 -79.252317
3 P2 2020-04-26 14:31:12.100310400 41.991390 -77.467769
4 P2 2020-03-31 15:53:27.777897600 41.492674 -76.542921

There are two persons, P1 and P2, and their locations along with timestamp.

[3]: from gps2space import geodf

[4]: gdf = geodf.df_to_gdf(df, x='longitude', y='latitude')
gdf.head()

[4]: pid timestamp latitude longitude \
0 P2 2020-04-27 10:42:22.162176000 40.993799 -76.669419
1 P2 2020-06-02 01:12:45.308505600 39.946904 -78.926234
2 P2 2020-05-08 23:47:33.718185600 41.237403 -79.252317
3 P2 2020-04-26 14:31:12.100310400 41.991390 -77.467769
4 P2 2020-03-31 15:53:27.777897600 41.492674 -76.542921

geometry
0 POINT (-76.66942 40.99380)
1 POINT (-78.92623 39.94690)
2 POINT (-79.25232 41.23740)
3 POINT (-77.46777 41.99139)
4 POINT (-76.54292 41.49267)

[5]: pa = gpd.read_file('../data/pacounty.shp')

[6]: ax = pa.boundary.plot(figsize=(12, 12), edgecolor='black', linewidth=0.6)
gdf.plot(ax=ax, column='pid')

plt.show();

1.4. Activity Space 7

gps2space

The figure shows the distribution of our data with two different colors representing P1 and P2, respectively.

1.4.1 Buffer-based activity space

We import the space module. The space module has a function buffer_space which takes four parameters:

• gdf: This is your GeoDataFrame

• dist: This is the buffer distance, the default value is 0 meter

• dissolve: This is the level of aggregating from which you aggregate points to form polygon, the default value is
week

• proj: This is the EPSG identifier you want to use to project your spatial data, the default value is 2163

Please note: Buffer distance and your projection are related. For raw Lat/Long coordinate pairs (often called unpro-
jected data), the unit is degree. It is not usual to buffer geometry in degrees. You have to decide which projection
system is most appropriate for your own data based on the geographical location. For example, EPSG:2163 is com-
monly used in the United States, and the unit of distance is meter. See here for more information about EPSG identifier.

In this example, we will calculate activity space on a weekly basis. Before that, we need to create a column represents
week from the timestamp. We will also create year and month just to show how you can obtain those information
from timestamp. It is better to include infer_datetime_format=True because this will make datetime
function much faster, especially when dealing with big data.

[7]: gdf['timestamp'] = pd.to_datetime(gdf['timestamp'], infer_datetime_format=True)
gdf['year'] = gdf['timestamp'].dt.year
gdf['month'] = gdf['timestamp'].dt.month
gdf['week'] = gdf['timestamp'].dt.week
gdf.head()

8 Chapter 1. Description

https://epsg.io/

gps2space

<ipython-input-7-0eabe24f516a>:4: FutureWarning: Series.dt.weekofyear and Series.dt.
→˓week have been deprecated. Please use Series.dt.isocalendar().week instead.
gdf['week'] = gdf['timestamp'].dt.week

[7]: pid timestamp latitude longitude \
0 P2 2020-04-27 10:42:22.162176000 40.993799 -76.669419
1 P2 2020-06-02 01:12:45.308505600 39.946904 -78.926234
2 P2 2020-05-08 23:47:33.718185600 41.237403 -79.252317
3 P2 2020-04-26 14:31:12.100310400 41.991390 -77.467769
4 P2 2020-03-31 15:53:27.777897600 41.492674 -76.542921

geometry year month week
0 POINT (-76.66942 40.99380) 2020 4 18
1 POINT (-78.92623 39.94690) 2020 6 23
2 POINT (-79.25232 41.23740) 2020 5 19
3 POINT (-77.46777 41.99139) 2020 4 17
4 POINT (-76.54292 41.49267) 2020 3 14

Now that we have the week column, we can calculate buffer-based activity space on a weekly basis using the
buffer_space function and pass your choice to the four parameters we mentioned before. In this example, we
will use 100 meters as buffer distance and project our data in EPSG:2163.

[8]: from gps2space import space

[9]: buff_space = space.buffer_space(gdf, dist=100, dissolve='week', proj=2163)

[10]: buff_space.head()

[10]: week geometry pid \
0 1 MULTIPOLYGON (((1720865.011 -318218.702, 17208... P2
1 2 MULTIPOLYGON (((1825885.203 -276088.593, 18258... P2
2 3 MULTIPOLYGON (((1813177.513 -244398.992, 18131... P2
3 4 MULTIPOLYGON (((1745369.818 -298945.761, 17453... P2
4 5 MULTIPOLYGON (((1940966.624 -274243.069, 19409... P2

timestamp latitude longitude year month \
0 2020-01-05 07:50:30.081292799 40.199583 -79.496295 2020 1
1 2020-01-09 09:16:06.603628800 40.156435 -77.230625 2020 1
2 2020-01-16 04:50:28.301625600 40.705452 -78.310757 2020 1
3 2020-01-26 07:27:26.824550400 41.820474 -76.526561 2020 1
4 2020-01-31 16:15:44.942918400 40.820036 -78.510162 2020 1

buff_area
0 219558.394338
1 94096.454716
2 188192.909433
3 282289.364149
4 219558.394338

We can double-check what is the unit in EPSG:2163 projection system:

[11]: buff_space.crs.axis_info[0].unit_name

[11]: 'metre'

The result is “metre”. Accordingly, the buff_area column represents the buffer-based activity space measured in
square meters on a weekly basis. You probably noticed that this example did not separate P1 and P2 in calculating
activity space. Currently, the dissolve parameter only accept one string, not a list of strings. To get activity space

1.4. Activity Space 9

gps2space

for each person on a weekly basis is easy, all you need to do is to concatenate pid and week, then dissolve by the
newly created column.

[12]: gdf['person_week'] = gdf['pid'].astype(str) + '_' + gdf['week'].astype(str)
buff_space_person_week = space.buffer_space(gdf, dist=100, dissolve='person_week',
→˓proj=2163)
buff_space_person_week[['person_week','geometry','year','month','week','buff_area']].
→˓head()

[12]: person_week geometry year month \
0 P1_1 MULTIPOLYGON (((1743323.684 -263848.055, 17433... 2020 1
1 P1_10 MULTIPOLYGON (((1910983.134 -311490.071, 19109... 2020 3
2 P1_11 POLYGON ((1639281.583 -176601.784, 1639281.101... 2020 3
3 P1_12 MULTIPOLYGON (((2042446.492 -187461.495, 20424... 2020 3
4 P1_13 MULTIPOLYGON (((1736945.903 -338011.606, 17369... 2020 3

week buff_area
0 1 94096.454716
1 10 156827.424527
2 11 31365.484905
3 12 62730.969811
4 13 94096.454716

Now you get the activity space for each person on a weekly basis. Likewise, you can easily get each person’s activity
space on a yearly basis by simply concatenating pid and year, or activity space on a monthly basis by simply
concatenating pid and month

You can select the columns you are interested and save the GeoDataFrame to a spatial dataset or non-spatial dataset.
Here, we save the GeoDataFrame to a shp file and a csv file.

[13]: buff_space_person_week[['person_week','buff_area','geometry']].to_file('../data/
→˓buffer_space.shp')
buff_space_person_week[['person_week','buff_area']].to_csv('../data/buffer_space.csv')

<ipython-input-13-69566ebaa6bd>:1: UserWarning: Column names longer than 10
→˓characters will be truncated when saved to ESRI Shapefile.
buff_space_person_week[['person_week','buff_area','geometry']].to_file('../data/

→˓buffer_space.shp')

1.4.2 Convex hull-based space

We can also calculate the convex hull-based activity space using the convex_space function. The convex_space
takes three parameters:

• gdf: This is your GeoDataFrame

• group: This is the level of aggregating from which you group points to form polygon, the default value is week

• proj: This is the EPSG identifier you want to use to project your spatial data, the default value is 2163

In this example, we will dissolve the points by person_week

[14]: convex_space = space.convex_space(gdf, group='person_week', proj=2163)

[15]: convex_space.head()

[15]: person_week geometry \
0 P1_1 POLYGON ((1743224.165 -263838.253, 1767302.859...

(continues on next page)

10 Chapter 1. Description

gps2space

(continued from previous page)

1 P1_10 POLYGON ((1910885.055 -311470.562, 1770277.130...
2 P1_11 POINT (1639181.583 -176601.784)
3 P1_12 LINESTRING (1728441.354 -131257.473, 2042346.9...
4 P1_13 POLYGON ((1736846.385 -338001.805, 1838266.575...

convex_area pid timestamp latitude longitude year \
0 4.150956e+09 P1 2020-01-05 02:34:34.559443200 40.619272 -79.083519 2020
1 2.779601e+10 P1 2020-03-04 15:38:10.246531200 40.720979 -75.939881 2020
2 0.000000e+00 P1 2020-03-14 21:43:34.435401600 41.605263 -80.050210 2020
3 0.000000e+00 P1 2020-03-19 15:47:51.952416000 41.797624 -78.867266 2020
4 1.331579e+10 P1 2020-03-25 20:27:12.545942400 41.851171 -77.461965 2020

month week
0 1 1
1 3 10
2 3 11
3 3 12
4 3 13

The convx_area column represents the convex hull-based activity space measured in square meters in EPSG:2163.
This dataset is not perfect, we see that in Week 11 for P1, there is only one point, therefore a Point shape is constructed
and 0 is returned for its area. Similarly, in Week 12 for P1, a line shape is constructed rather than a Polygon and 0 is
returned for its area. You can also save this GeoDataFrame to a spatial dataset or a non-spatial dataset just like what
we have done for the buffer-based activity space measure.

1.4.3 Which method to choose

There are pros and cons of the buffer- and convex hull-based measure of activity space. Knowing how they work will
help you understand the process and choose the appropriate method.

The following figure shows the buffer-based activity space (in red color) and convex hull-based activity space (in blue
color) from a set of Lat/Long coordinate pairs (in black color). In essence, what buffer-based activity space does is:
first, draw a circle around every point using specified buffer distance, then dissolve all the buffers into a single feature
to form a Polygon. What convex hull-based activity space does is to line up the outermost points and form the polygon.

1.4. Activity Space 11

gps2space

The pro of buffer-based activity space is that it works with even only one point where the activity space is eventually
the area of the circle. However, you have to specify the buffer distance which sometimes is arbitrary and varies across
disciplines.

The convex hull-based activity space does not need any arbitrary parameter. However, if there are two or three points
that can line up, it is impossible to form an enclosing shape, and the returned activity space will be 0. In addition, if
there are extreme points that are beyond the point cluster, the convex hull-based activity space will be inflated.

The choice of methods depends on which one makes more sense for you research questions and which one is widely
acceptable in your field.

Other than the buffer- and convex hull-based minimum bounding box, there are other methods, for example, circle,
envelope, concave, etc. We may (or may not) include those methods in our package later on.

1.5 Shared space

Activity space can act as the building box for compiling shared space to indicate interactions by overlaying the activity
space at different scales. In the following example, we provide a workflow for building shared space from activity
space between P1 and P2 on a weekly basis. We use the buffer-based activity space and redo it with buffer distance of
1000 meter to get more overlapping areas for P1 and P2.

[16]: gdf.head()

12 Chapter 1. Description

gps2space

[16]: pid timestamp latitude longitude \
0 P2 2020-04-27 10:42:22.162176000 40.993799 -76.669419
1 P2 2020-06-02 01:12:45.308505600 39.946904 -78.926234
2 P2 2020-05-08 23:47:33.718185600 41.237403 -79.252317
3 P2 2020-04-26 14:31:12.100310400 41.991390 -77.467769
4 P2 2020-03-31 15:53:27.777897600 41.492674 -76.542921

geometry year month week person_week
0 POINT (-76.66942 40.99380) 2020 4 18 P2_18
1 POINT (-78.92623 39.94690) 2020 6 23 P2_23
2 POINT (-79.25232 41.23740) 2020 5 19 P2_19
3 POINT (-77.46777 41.99139) 2020 4 17 P2_17
4 POINT (-76.54292 41.49267) 2020 3 14 P2_14

[17]: buff1000m = space.buffer_space(gdf, dist=1000, dissolve='person_week', proj=2163)

[18]: buff1000m.head()

[18]: person_week geometry pid \
0 P1_1 MULTIPOLYGON (((1744219.350 -263936.270, 17442... P1
1 P1_10 MULTIPOLYGON (((1911865.841 -311665.653, 19118... P1
2 P1_11 POLYGON ((1640181.583 -176601.784, 1640176.767... P1
3 P1_12 MULTIPOLYGON (((2043342.159 -187549.710, 20433... P1
4 P1_13 MULTIPOLYGON (((1737841.570 -338099.822, 17378... P1

timestamp latitude longitude year month week \
0 2020-01-05 02:34:34.559443200 40.619272 -79.083519 2020 1 1
1 2020-03-04 15:38:10.246531200 40.720979 -75.939881 2020 3 10
2 2020-03-14 21:43:34.435401600 41.605263 -80.050210 2020 3 11
3 2020-03-19 15:47:51.952416000 41.797624 -78.867266 2020 3 12
4 2020-03-25 20:27:12.545942400 41.851171 -77.461965 2020 3 13

buff_area
0 9.409645e+06
1 1.568274e+07
2 3.136548e+06
3 6.273097e+06
4 9.409645e+06

[19]: share_space_list = []

for idx, row in buff1000m.iterrows():
if idx<len(buff1000m.index)-1:

main_poly = buff1000m.iloc[[idx]]
other_poly = buff1000m.iloc[(idx+1):]
share_space = gpd.overlay(main_poly, other_poly, how='intersection')
share_space['share_space'] = share_space.geometry.area
share_space_list.append(share_space)

[20]: df = pd.concat(share_space_list)
df.shape

[20]: (4, 29)

[21]: df[['person_week_1','person_week_2','week_1','week_2','share_space']]

1.5. Shared space 13

gps2space

[21]: person_week_1 person_week_2 week_1 week_2 share_space
0 P1_18 P2_5 18.0 5.0 9.145960e+04
0 P1_27 P2_12 27.0 12.0 1.439406e+06
0 P1_28 P2_4 28.0 4.0 3.537871e+05
0 P2_12 P2_31 12.0 31.0 3.973167e+05

The share_space column represents the shared space between P1 and P2 on a weekly basis. Because we compiled
the example data randomly, there are not many interactions measured by overlapping activity space on a weekly basis
even we use buffer distance of 1000 meters to calculate their activity space. For example, there is a shared space of
9.145960e+04 (~ 91459.6) square meters between P1 at the 18th week of 2020 and P2 at the 5th week of 2020.

Please be aware that the above scripts overlay each row on every another row in the data, so there are duplicates, you
can select the rows you want to keep. For example, if you are interested in who have shared space with P1, you can
just keep those start with P1 in the person_week_1 (or person_week_2) column and export to whatever data
formats you want to work with.

1.6 Measuring Distance

1.6.1 Point to Point distance

In spatial analysis, we often want to know the shortest distance between two features. For example, we may want
to know the distance from residence to pharmacy store to see if the distance affects people’s health. Or, we may be
interested in whether the distance to airport or highway affects population growth. In this example, we will measure
the nearest distance to airport in Pennsylvania, USA.

As usual, we need to import libraries we will be using.

[1]: %matplotlib inline

import numpy as np
import pandas as pd
import geopandas as gpd
import matplotlib.pyplot as plt

Then, we load the example data and airport data and explore the data by plotting them together.

[2]: df = pd.read_csv('../data/example.csv')

[3]: from gps2space import geodf
gdf = geodf.df_to_gdf(df, x='longitude', y='latitude')
gdf.head()

[3]: pid timestamp latitude longitude \
0 P2 2020-04-27 10:42:22.162176000 40.993799 -76.669419
1 P2 2020-06-02 01:12:45.308505600 39.946904 -78.926234
2 P2 2020-05-08 23:47:33.718185600 41.237403 -79.252317
3 P2 2020-04-26 14:31:12.100310400 41.991390 -77.467769
4 P2 2020-03-31 15:53:27.777897600 41.492674 -76.542921

geometry
0 POINT (-76.66942 40.99380)
1 POINT (-78.92623 39.94690)
2 POINT (-79.25232 41.23740)
3 POINT (-77.46777 41.99139)
4 POINT (-76.54292 41.49267)

14 Chapter 1. Description

gps2space

[4]: airport = gpd.read_file('../data/paairport.shp')
airport.head()

[4]: STATE NAME \
0 Pennsylvania Erie International
1 Pennsylvania Bradford Regional
2 Pennsylvania Venango Regional
3 Pennsylvania Wilkes-Barre/Scranton International
4 Pennsylvania Williamsport Regional

geometry
0 POINT (-80.17600 42.08208)
1 POINT (-78.63987 41.80313)
2 POINT (-79.86014 41.37793)
3 POINT (-75.72390 41.33823)
4 POINT (-76.92144 41.24205)

[5]: pacounty = gpd.read_file('../data/pacounty.shp')

[6]: ax = pacounty.boundary.plot(figsize=(12, 12), edgecolor='black', linewidth=0.6)
gdf.plot(ax=ax, color='r')
airport.plot(ax=ax, color='g', marker='*', markersize=60)

plt.show();

The red dots are the footprints of Person 1 (P1) and Person 2 (P2) while the green stars are the airports in Pennsylvania,
USA.

We can calculate the distance from each point of P1 and P2 to the nearest airport using the dist_to_point function
in the dist module. The dist_to_point function takes three parameters:

• gdf_a: This is the GeoDataFrame of P1 and P2’s footprints

• gdf_b: This is the landmark from where you want to measure the distance

• proj: This is the EPSG identifier you want to use to project your spatial data and will be applied to gdf_a and
gdf_b

Because the airport data come from other source, we do not know if it has been projected or what is the projection

1.6. Measuring Distance 15

gps2space

system. So we want to check the projection system for airport data.

[7]: airport.crs

It returns nothing, which means this data do not have projection. We will give it an initial projection of EPSG:4326.

[8]: airport.crs = ("epsg:4326")

Now, we can import the dist function to calculate the distance from each point of P1 and P2 to the nearest airport.

[9]: from gps2space import dist

[10]: dist_to_airport = dist.dist_to_point(gdf, airport, proj=2163)

[11]: dist_to_airport.head()

[11]: pid timestamp latitude longitude \
0 P2 2020-04-27 10:42:22.162176000 40.993799 -76.669419
1 P2 2020-06-02 01:12:45.308505600 39.946904 -78.926234
2 P2 2020-05-08 23:47:33.718185600 41.237403 -79.252317
3 P2 2020-04-26 14:31:12.100310400 41.991390 -77.467769
4 P2 2020-03-31 15:53:27.777897600 41.492674 -76.542921

geometry STATE NAME \
0 POINT (1926745.083 -169042.499) Pennsylvania Williamsport Regional
1 POINT (1774126.223 -333525.438) Pennsylvania Johnstown-Cambria County
2 POINT (1712951.727 -200231.269) Pennsylvania Du Bois-Jefferson County
3 POINT (1833671.313 -79623.054) Pennsylvania Williamsport Regional
4 POINT (1921659.985 -112174.444) Pennsylvania Williamsport Regional

dist2point
0 34579.711173
1 42187.331826
2 30051.080354
3 94804.346362
4 42388.435141

The dist2point column represents the distance from each point to the nearest airport measured in meters. Like-
wise, you can then save the GeoDataFrame to a spatial dataset or non-spatial dataset as we did in the last section.

1.6.2 Point to Polygon distance

In this example, we want to calculate the nearest distance to parks represented in polygons using dist_to_poly
function. The dist_to_poly function incorporates R-tree and spatial indexing technologies to boost the nearest
neighbor query. The dist_to_poly function takes four parameters:

• gdf_source: This is the source GeoPandas dataframe

• gdf_target: This is the target GeoPandas dataframe

• proj: This is the EPSG identifier you want to use to project your spatial data and will be applied to gdf_source
and gdf_target

• search_radius: This is the search radius in meters with a default value of None

Please note that:

1. If search_radius is specified, points with no neighbors within the search radius, then the dist_to_poly
function returns a NaN value

16 Chapter 1. Description

gps2space

2. If search_radius is not specified, the dist_to_poly function employs brute-force search to find the
nearest distance, and it may take longer time to calculate the nearest distance, especially for data in larger
volumes

As usual, we read the park data as a GeoPandas dataframe. Then we illustrate how dist_to_poly works
using two examples: an example specifying the search_radius and another example without specifying the
search_radius

[12]: park = gpd.read_file('../data/papark.shp')
park.head()

[12]: park_id park_name park_acres \
0 1 11th Avenue Playground 1.48
1 22 Alpine Parklet 0.12
2 6117 Negley Park 18.46
3 8202 Deer Lake Community Park 32.76
4 8215 Delano Playground 1.37

geometry
0 POLYGON ((-79.89948 40.40552, -79.89946 40.406...
1 POLYGON ((-80.01282 40.45765, -80.01303 40.457...
2 POLYGON ((-76.89575 40.25092, -76.89178 40.249...
3 MULTIPOLYGON (((-76.05700 40.62615, -76.05696 ...
4 POLYGON ((-75.97098 40.80281, -75.97062 40.801...

Specifying search_radius

[13]: %%time
dist_with_search_radius = dist.dist_to_poly(gdf, park, proj=2163, search_radius=10000)

A search_radius of 10000 meters is specified. Points with no neighbors intersected
→˓with thte search radius will return NaN.
Wall time: 4.57 s

[14]: dist_with_search_radius

[14]: pid timestamp latitude longitude \
0 P2 2020-04-27 10:42:22.162176000 40.993799 -76.669419
1 P2 2020-06-02 01:12:45.308505600 39.946904 -78.926234
2 P2 2020-05-08 23:47:33.718185600 41.237403 -79.252317
3 P2 2020-04-26 14:31:12.100310400 41.991390 -77.467769
4 P2 2020-03-31 15:53:27.777897600 41.492674 -76.542921
..
195 P1 2020-04-14 22:59:47.187801600 40.592932 -77.002548
196 P1 2020-02-18 16:00:05.505350400 40.263436 -80.322911
197 P1 2020-02-24 10:22:29.605353600 40.726640 -76.403706
198 P1 2020-01-13 10:02:15.962697600 40.279678 -77.898978
199 P1 2020-04-02 23:09:49.639881600 41.660656 -79.830351

geometry dist2poly
0 POINT (1926745.083 -169042.499) 3143.431951
1 POINT (1774126.223 -333525.438) 4007.426442
2 POINT (1712951.727 -200231.269) 7198.553223
3 POINT (1833671.313 -79623.054) 4418.972172
4 POINT (1921659.985 -112174.444) 4997.223163
..
195 POINT (1912029.573 -220204.526) 2789.935358

(continues on next page)

1.6. Measuring Distance 17

gps2space

(continued from previous page)

196 POINT (1651469.678 -328218.968) 3433.440261
197 POINT (1956064.504 -191577.975) 6104.559787
198 POINT (1848682.909 -274721.379) 2696.384797
199 POINT (1655332.627 -166134.557) 5926.050348

[200 rows x 6 columns]

Without specifying search_radius

[15]: %%time
dist_no_search_radius = dist.dist_to_poly(gdf, park, proj=2163)

No search_radius is specified, the calculation may take longer time for datasets in
→˓large volumes.
Wall time: 17.3 s

[16]: dist_no_search_radius

[16]: pid timestamp latitude longitude \
0 P2 2020-04-27 10:42:22.162176000 40.993799 -76.669419
1 P2 2020-06-02 01:12:45.308505600 39.946904 -78.926234
2 P2 2020-05-08 23:47:33.718185600 41.237403 -79.252317
3 P2 2020-04-26 14:31:12.100310400 41.991390 -77.467769
4 P2 2020-03-31 15:53:27.777897600 41.492674 -76.542921
..
195 P1 2020-04-14 22:59:47.187801600 40.592932 -77.002548
196 P1 2020-02-18 16:00:05.505350400 40.263436 -80.322911
197 P1 2020-02-24 10:22:29.605353600 40.726640 -76.403706
198 P1 2020-01-13 10:02:15.962697600 40.279678 -77.898978
199 P1 2020-04-02 23:09:49.639881600 41.660656 -79.830351

geometry dist2poly
0 POINT (1926745.083 -169042.499) 3143.431951
1 POINT (1774126.223 -333525.438) 4007.426442
2 POINT (1712951.727 -200231.269) 7198.553223
3 POINT (1833671.313 -79623.054) 4418.972172
4 POINT (1921659.985 -112174.444) 4997.223163
..
195 POINT (1912029.573 -220204.526) 2789.935358
196 POINT (1651469.678 -328218.968) 3433.440261
197 POINT (1956064.504 -191577.975) 6104.559787
198 POINT (1848682.909 -274721.379) 2696.384797
199 POINT (1655332.627 -166134.557) 5926.050348

[200 rows x 6 columns]

[18]: dist_no_search_radius[dist_no_search_radius['dist2poly'] == 'NaN']

[18]: Empty GeoDataFrame
Columns: [pid, timestamp, latitude, longitude, geometry, dist2poly]
Index: []

[23]: dist_with_search_radius.describe().T

18 Chapter 1. Description

gps2space

[23]: count mean std min 25% \
latitude 200.0 40.878765 0.649778 39.807771 40.321969
longitude 200.0 -77.732011 1.465171 -80.485216 -78.824666
dist2poly 185.0 3919.033243 2802.089284 0.000000 1550.077077

50% 75% max
latitude 40.821446 41.468584 41.991390
longitude -77.635756 -76.549980 -75.025528
dist2poly 3623.525457 5316.719387 13855.516463

[20]: dist_no_search_radius.describe().T

[20]: count mean std min 25% \
latitude 200.0 40.878765 0.649778 39.807771 40.321969
longitude 200.0 -77.732011 1.465171 -80.485216 -78.824666
dist2poly 200.0 4726.981887 4027.497246 0.000000 1849.390860

50% 75% max
latitude 40.821446 41.468584 41.991390
longitude -77.635756 -76.549980 -75.025528
dist2poly 3877.189734 5970.677707 21244.390382

The above results show that specifying a search radius decreases the time needed for the nearest distance calculation,
and most of the points have neighbors within the search radius, the final results are similar.

1.7 Tips

• Make sure you treat latitude and longitude columns correctly when building spatial data from raw Lat/Long
coordinate pairs

• Make sure to double-check your projection Coordinate Reference System (CRS) and make sure that that pro-
jection CRS is appropriate for your data

• Most spatial operations require the spatial data are in the same CRS, make sure you double check the CRS
before you conduct spatial operations such as overlay, spatial join, and distance query

• Make sure you know what is the unit measure of your projection. See here for more information about projection

• Think about what the results will look like beforehand. If the results are different from what you have expected,
then you know there are something wrong either in you mind or in the program

• Most importantly, backup your scripts and data frequently or use version control

1.8 Useful Links

• Pandas

• GeoPandas

• Shapely

• StackOverflow

1.7. Tips 19

https://docs.qgis.org/3.10/en/docs/gentle_gis_introduction/coordinate_reference_systems.html#figure-robinson-projection
https://pandas.pydata.org/
https://geopandas.org/
https://shapely.readthedocs.io/en/latest/manual.html
https://stackoverflow.com/questions/tagged/gis

gps2space

1.9 Contributing

Issues, suggestions, and contributions are welcome. You can submit issues, suggestions, and your thoughts on the
GitHub Repository. You can also contact the author through Email.

1.10 Authors

• Shuai Zhou (Department of Agricultural Economics, Sociology, and Education, Penn State University) is the
key developer and corresponding author of the package.

• Yanling Li (Department of Human Development and Family Studies, Penn State University) helped test the
package with simulated and usage examples.

• Guangqing Chi (Department of Agricultural Economics, Sociology, and Education, Penn State University),
Sy-Miin Chow (Department of Human Development and Family Studies, Penn State University) helped con-
ceptualize the scope and functionality of the package, and provided feedback for testing and improving the
package.

• Yosef Bodovski (Population Research Institute, Penn State University) provided usage examples and feedback
to improve and refine the functions in this package.

Development and sharing of this publicly available package was supported by National Institutes of Health grants
U24AA027684, U01DA046413 (SV/NF) and P2C HD041025, National Science Foundation grants BCS-1052736,
IGE-1806874, and SES-1823633, and the Pennsylvania State University Quantitative Social Sciences Initiative and
UL TR000127 from the National Center for Advancing Translational Sciences.

20 Chapter 1. Description

https://github.com/shuai-zhou/gps2space
mailto:sxz217@psu.edu
https://shuaizhou.net/

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

21

	Description
	Installation
	Overview
	Building Spatial Data
	Activity Space
	Shared space
	Measuring Distance
	Tips
	Useful Links
	Contributing
	Authors

	Indices and tables

